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Bootstraps for Time Series
Peter Bühlmann

Abstract. We review and compare block, sieve and local bootstraps for time
series and thereby illuminate theoretical aspects of the procedures as well
as their performance on finite-sample data. Our view is selective with the
intention of providing a new and fair picture of some particular aspects of
bootstrapping time series.

The generality of the block bootstrap is contrasted with sieve bootstraps.
We discuss implementational advantages and disadvantages. We argue that
two types of sieve often outperform the block method, each of them in
its own important niche, namely linear and categorical processes. Local
bootstraps, designed for nonparametric smoothing problems, are easy to use
and implement but exhibit in some cases low performance.

Key words and phrases: Autoregression, block bootstrap, categorical time
series, context algorithm, double bootstrap, linear process, local bootstrap,
Markov chain, sieve bootstrap, stationary process, Studentizing.

1. INTRODUCTION

Bootstrapping can be viewed as simulating a statistic
or statistical procedure from an estimated distribution
P̂n of observed data X1, . . . ,Xn. Under dependence,
the construction of P̂n is more complicated and far
less obvious than in Efron’s (1979) seminal proposal
for the independent setup. We discuss here mainly
block, sieve and local bootstraps, which are all in
a certain sense nonparametric and model-free. The
purpose is to obtain a fair picture of strengths and
weaknesses of such different time series bootstraps.
To do so, we focus on theoretical aspects as well as
on performance for finite sample data. So far, very
little attention has been paid to an overall perspective
when comparing different schemes. In that respect,
our selective view offers valuable new insights and
makes our comparative exposition rather different from
those of Léger, Politis and Romano (1992), Efron
and Tibshirani (1993, Chapters 8.5–8.6), Shao and Tu
(1995, Chapter 9), Li and Maddala (1996) or Davison
and Hinkley (1997, Chapter 8).

Extracting information from data is formalized here
with a scalar-, vector- or curve-valued estimator θ̂ . Es-
timation of the sampling distribution of θ̂ , or pivo-
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tized or Studentized versions thereof, is essential for
statistical inference. With time series data, this task is
much more difficult than for independent observations
and methods based on analytic derivations quickly be-
come complicated. For example, consider an estimator
θ̂ which is asymptotically normally distributed around
a finite-dimensional parameter θ of interest: under suit-
able conditions and assuming stationarity of the data
X1, . . . ,Xn,√

n(θ̂ − θ) ⇒ N (0, σ 2∞) as n → ∞.(1.1)

In contrast to the i.i.d. setup, the asymptotic variance
σ 2∞ is an infinite-dimensional object, involving an
infinite sum of covariances, which is generally not
estimable with convergence rate 1/

√
n. As a simple

example,

if θ̂ = n−1
n∑

t=1

Xt, σ 2∞ =
∞∑

k=−∞
Cov(X0,Xk).

The asymptotic variance is thus the spectral density of
the data-generating process at zero (normalized by the
factor 2π ). As another example,

if θ̂ = med(X1, . . . ,Xn),

σ 2∞ =
∞∑

k=−∞
Cov

(
IF(X0), IF(Xk)

)
,

IF(x) = sign(x − θ)

2f (θ)
,
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where θ = F −1(1/2) is the median of the cumulative
marginal distribution F of Xt having density f . Here,
the spectral density of the process with influence func-
tions (IF(Xt ))t∈Z is involved, that is, an instantaneous
unknown transform of the process (Xt )t∈Z. It would be
very awkward to estimate the unknown density f and
θ to get an estimate of IF(·) and then of its spectral
density. Bootstraps have the advantage of consistently
estimating the asymptotic variance and distribution of√

n(θ̂ − θ) automatically.
Consistency, or first-order accuracy, is defined by re-

quiring consistent estimation of the limiting distribu-
tion of θ̂ . More precisely, for an R

q -valued estimator θ̂ ,

sup
x∈Rq

∣∣P∗[an(θ̂∗ − θ∗) ≤ x]
−P[an(θ̂ − θ) ≤ x]∣∣ = oP (1), n → ∞,

(1.2)

where an(θ̂ − θ) converges to a nondegenerate lim-
iting distribution. Here, the symbol “≤” is defined
componentwise and, as usual, the asterisk ∗ denotes
a bootstrap quantity. The centering value θ∗, which
is a constant conditional on the original observations
X1, . . . ,Xn, is typically not chosen to be θ̂ as in
Efron’s i.i.d. bootstrap; details are given later when
specifying particular time series bootstraps.

For example, if θ̂ is the sample mean or median, the
limiting distribution is N (0, σ 2∞) as in (1.1) with σ 2∞
from above (provided that some regularity conditions
hold). Consistency is then implied by
√

n(θ̂∗−θ∗) ⇒ N (0, σ 2∞) in probability, as n → ∞,

saying that the limiting distributions of the boot-
strapped and original estimator coincide. This conver-
gence typically requires, among other things, that the
bootstrap variance is asymptotically correct,

nVar∗(θ̂∗) = σ 2∞ + oP (1), n → ∞.

Since often σ 2∞ = limn nVar(θ̂ ), this can be viewed as
a convergence of standardized variances,

nVar∗(θ̂∗) − nVar(θ̂) = oP (1), n → ∞.

Bootstrap consistency in (1.2) usually holds when θ̂

is asymptotically normal. As much as approximating
the distribution of an estimator θ̂ , the bootstrap pro-
cedure also allows Var(θ̂) to be approximated by the
bootstrap variance Var∗(θ̂∗). The accuracy for distrib-
ution estimation in (1.2) is driven by the accuracy of
the bootstrap variance

a2
nVar∗(θ̂∗) − a2

nVar(θ̂ ),(1.3)

provided that Edgeworth expansions for θ̂ and θ̂∗ are
valid. Usually, the infinite-dimensional character of
the limiting variance makes this problem of accurate
bootstrap variance estimation much harder than in the
independent setting.

Of course, as in the case with independent data, time
series bootstraps also offer the advantage of higher
order accuracy improving upon estimated normal ap-
proximations as in (1.1). The approximation is then
estimated for Studentized versions of θ̂ , or a con-
fidence interval is adjusted with the BCa [bias cor-
rected and accelerated (Efron, 1987)] or a double boot-
strap correction. However, for finite sample situations,
first-order schemes often may be as accurate as their
second-order counterparts, and a good bound in (1.3)
is then desired. A substantial part of the paper is de-
voted to the discussion of first-order accuracy, but we
also include aspects of second-order correctness.

2. BLOCK BOOTSTRAP

The block bootstrap tries to mimic the behavior of
an estimator θ̂ by i.i.d. resampling of blocks Xt+1, . . . ,

Xt+� of consecutive observations: the blocking is used
to preserve the original time series structure within
a block. Such an idea appears in Hall (1985), but
the breakthrough of the block bootstrap is given by
Künsch’s (1989) paper, explaining in detail how and
why such a bootstrap works.

2.1 The Block Bootstrap Procedure

Proper application of the block bootstrap scheme
involves first an adaptation to the problem. Assume
that the statistic θ̂ estimates a parameter θ which is a
functional of the m-dimensional marginal distribution
of the time series. For example, the lag(1)-correlation
Corr(X0,X1) in a stationary time series is a func-
tional of the distribution of (X0,X1), corresponding to
m = 2. Consider then vectors of consecutive observa-
tions

Yt = (Xt−m+1, . . . ,Xt ), t = m, . . . , n,(2.1)

and construct the block-resampling on the basis of
these vectorized observations as follows. Build overlap-
ping blocks of consecutive vectors (Ym, . . . , Ym+�−1),

(Ym+1, . . . , Ym+�), . . . , (Yn−�+1, . . . , Yn), where � ∈ N

is the blocklength parameter. For simplicity, assume
first that the number of blocks n − m + 1 = k� with
k ∈ N. Then, resample k blocks independently with re-
placement,

YS1+1, . . . , YS1+�,

YS2+1, . . . , YS2+�, . . . , YSk+1, . . . , YSk+�,
(2.2)
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where the block-starting points S1, . . . , Sk are i.i.d.
Uniform({m − 1, . . . , n − �}) on the possible starting
locations. If the number of blocks n − m + 1 is not
a multiple of �, we resample k = �(n − m + 1)/�� + 1
blocks but use only a portion of the kth block to get n−
m + 1 resampled m-vectors in total. These resampled
blocks of m-vectors in (2.2) could be referred to the
block bootstrap sample. However, as we will see, the
block bootstrapped estimator is not defined by a plug-
in rule and the notion of a bootstrap sample is then not
so clear.

A good definition of the block bootstrapped estima-
tor is not entirely straightforward. The vectorization in
(2.1) is typically associated with the estimator so that

θ̂ is symmetric

in the vectorized observations Ym, . . . , Yn.

For example, it is often possible to represent the
estimator as

θ̂ = T
(
F (m)

n

)
,(2.3)

where F
(m)
n (·) = (n−m+1)−1 ∑n

t=m 1[Yt≤·] is the em-
pirical cumulative distribution function of the
m-dimensional marginal distribution of (Xt )t∈Z, and
T is a smooth functional.

EXAMPLE A. For the lag(1)-correlation θ =
Corr(X0,X1), consider the estimator θ̂ = R̂(1)/R̂(0)

with R̂(k) = (n − 1)−1 ∑n−1
t=1 (Xt − µ̂X)(Xt+k − µ̂X)

(k ∈ {0, 1}), µ̂X = (n − 1)−1 ∑n−1
t=1 Xt . This estima-

tor θ̂ is symmetric in Y2, . . . , Yn with Yt = (Xt−1,Xt )

and it is of the form (2.3) with m = 2. Note that
the usual estimator is θ̃ = R̃(0)/R̃(1) with R̃(k) =
n−1 ∑n

t=1(Xt − Xn)(Xt+k − Xn), which is approxi-
mately equal to θ̂ , modulo “edge effects.”

EXAMPLE B. The GM-estimators (generalized
M-estimators) in an AR(p) model can be written in the
form (2.3) with m = p+1. They are defined implicitly,
analogously to the normal equations, by

n∑
t=p+1

wtψ
(
(Xt − φ̂1Xt−1 − · · · − φ̂pXt−p)σ−1)

× (Xt−1, . . . ,Xt−p)T = 0,

where ψ : R → R, σ 2 is the innovation variance
and (wt )

n
t=p+1 is a sequence of appropriate weights.

See Martin and Yohai (1986). Besides the Gaussian
maximum likelihood estimator (MLE) with ψ(x) = x,
this includes estimators being robust against innovation
and lagged-value outliers.

The block bootstrapped estimator corresponding to
(2.3) is defined as

θ̂∗B = T
(
F

(m)∗B
n

)
,

F
(m)∗B
n (·) = (n − m + 1)−1

k∑
i=1

Si+�∑
t=Si+1

1[Yt≤·]
(2.4)

with k and Si as in (2.2). The centering value θ∗ for
the block bootstrap in (1.2) is often E∗B[θ̂∗B ], which is
generally different from θ̂ . This definition of the block
bootstrapped estimator, given by Künsch (1989), can
be interpreted as follows. If θ̂ = gn−m+1(Ym, . . . , Yn)

is a symmetric function gn−m+1(·) of n − m + 1
vectorized observations, then

θ̂∗B = gn−m+1(YS1+1, . . . , YS1+�, YS2+1, . . . ,

YS2+�, . . . , YSk+1, . . . , YSk+�),

employing a plug-in rule based on the vectorized
observations. In particular, the block bootstrapped
estimator is defined with Y -variables occurring only
in the set of the original vectorized observations. This
would not be the case without the vectorization step
in (2.1). Figure 1 illustrates the artifact of the naive
block bootstrap using m = 1 instead of the correct
m = 2 in Example A. The most striking defect of the
naive block bootstrap sample are the newly created
points in the scatter plot within the rectangles in the

FIG. 1. Lag(1) scatter plots of (re)samples of size n = 512:
(left panel) original sample (Xt−1,Xt ), t = 2, . . . , n;
(middle panel) block bootstrap sample YSi+j , i = 1, . . . ,

k = 64, j = 1, . . . , � = 8, from (2.2) with m = 2; (right panel)
naive block bootstrap sample (X∗nB

t−1 ,X∗nB
t ), t = 2, . . . , n,

where X∗nB
t is the sequentially t th value in (2.2) with m = 1,

k = 64, � = 8; the points within the rectangles (and others) do not
occur in the plot of the left panel.
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upper left and the lower right corners. A naively block
bootstrapped estimator (e.g., for the autocorrelation in
Example A) which uses the plug-in rule in conjunction
with the naive block bootstrap sample may be strongly
affected by these newly created and bad points. As
mentioned already, this artifact is not present with
the block bootstrap definition in (2.4) based on the
vectorized observations.

For the block bootstrap procedure, at least two
difficulties remain to be answered case by case:

1. Due to the lack of the plug-in principle, redesigning
the computation of θ̂∗B is often necessary and can
become very inconvenient.

2. Vectorization as in (2.1) is not always appropriate.
For example, the MA-parameter in an MA(1) model
or the spectral density of a stationary process
depends on the entire distribution of the process,
corresponding to m = ∞.

Whenever problem (1) or (2) becomes too awkward,
an ad-hoc solution is to ignore the vectorization step in
(2.1) and work with the naive block bootstrap (using
m = 1). As a result, a substantial efficiency loss of the
method may occur. Proposals for solving problem (2),
mainly in case of spectral density estimation, have been
given by Politis and Romano (1992) and Bühlmann and
Künsch (1995).

2.2 Range of Applicability and Accuracy

The block bootstrap is designed to work for general
stationary data generating processes (Xt )t∈Z with Xt ∈
Rd (d ≥ 1) or taking values in a categorical space.
From an asymptotic point of view, the blocklength
� should grow, but not too fast, as n → ∞. When
restricting to short-range dependent processes (e.g.,
summable autocovariances or mixing coefficients), the
block bootstrap has been theoretically justified in many
circumstances: for example, for estimators as in (2.3)
with smooth T , cf. Künsch (1989) and Bühlmann
(1994). Other references are given in Section 8. Under
long-range dependence, some theory and modifications
are worked out for the case where θ̂ = Xn: Lahiri
(1993) shows that the block bootstrap is consistent
whenever Xn has a normal limiting distribution but
the bootstrapped statistic has to be corrected with
a factor depending on the typically unknown rate
of convergence, for example, on the self-similarity
parameter in self-similar processes. If Xn has a non-
normal limit due to long-range dependence, Hall, Jing
and Lahiri (1998) show consistency of a modified
block-subsampling procedure. In the case where the

observations have a heavy tailed marginal distribution,
Lahiri (1995) shows that block bootstrapping with
resampling size m � n is consistent for the case with
θ̂ = Xn.

Regarding accuracy of the block bootstrap, consider
first estimation of the asymptotic variance of θ̂ . Künsch
(1989) showed that for the mean squared error

E
[(

nVar∗B(θ̂∗B) − nVar(θ̂)
)2] ∼ const · n−2/3,(2.5)

achieved with the rate-optimal blocklength � = const ·
n1/3. Note that this corresponds to (1.3) with an = √

n.
The essential assumptions for this result require that
nVar(θ̂ ) converge to a nondegenerate limiting variance,
T in (2.3) be sufficiently smooth and some mixing
conditions for the stationary data-generating process
(Xt )t∈Z hold. A bit surprisingly, the rate n−2/3 does not
depend on the “degree of dependence,” for example,
how fast autocorrelations, or more general mixing co-
efficients, decay as separation lags increase. In particu-
lar, even when autocovariances and mixing coefficients
decay exponentially fast, the MSE-rate is still n−2/3.
Thus, the block bootstrap variance estimate is not rate-
adaptive with respect to dependence properties of the
underlying process. An explanation for this nonadap-
tivity was already given by Künsch (1989): the block
bootstrap variance estimate is asymptotically equiva-
lent to a lag-window spectral density estimator at zero
with triangular window,

nVar∗B(θ̂∗B) ≈
�∑

k=−�

(
1 − |k|

�

)
R̂IF(k),(2.6)

where R̂IF(k) is the empirical covariance of (IF(Yt ;
F (m)))n

t=m at lag k with IF(·;F (m)) the influence func-
tion of the estimator at the true underlying
m-dimensional marginal distribution F (m); the influ-
ence function IF(·;F (m)) is the transformation which
asymptotically linearizes a suitably regular estimator
[see (2.7)]. However, the triangular form of the win-
dow 1 − |k|/� (k = −�, . . . , 0, . . . , �) makes it impos-
sible to improve upon the n−2/3 MSE-rate. Tapered
block bootstraps overcome this limitation; see Kün-
sch’s [(1989), formula (2.12)] brief remark and Papar-
oditis and Politis (2001) for a different, rigorously an-
alyzed proposal.

For constructing confidence regions, Götze and Kün-
sch (1996) showed that the distribution of a suitably de-
fined Studentized version of θ̂ can be approximated by
the block bootstrap with accuracy close to OP (n−2/3),
using a blocklength � = const · n1/3. [This rate can be
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improved to come close to OP (n−3/4) by using a vari-
ance estimate for Studentizing which takes negative
values with positive probability.] As in variance esti-
mation, the rate of accuracy cannot be improved for
time series having geometrically fast decaying depen-
dence properties. Götze and Künsch (1996) also jus-
tify a modification of Efron’s (1987) BCa proposal. For
finite samples, a second-order accurate method may
not always be beneficial. Unfortunately, there is no
easy way to judge from data whether a second-order
technique pays off. Double block bootstrapping for
correcting a first-order bootstrap confidence region is
not straightforward because dependence is corrupted at
places where blocks join (cf. Davison and Hall, 1993,
and Choi and Hall, 2000).

2.3 Choosing a Blocklength �

An optimal blocklength, being the tuning parameter
of the block bootstrap, depends on at least three
things: the data-generating process, the statistic to be
bootstrapped and the purpose for which the bootstrap
is used, for example, bias, variance or distribution
estimation.

Consider first block bootstrap variance estimation
for an estimator θ̂ of the form (2.3). Then

θ̂ ≈ (n − m + 1)−1
n∑

t=m

IF
(
Yt;F (m)

)
,(2.7)

where IF(·;F (m)) is the influence function of θ̂ at F (m).
Based on this linearization, formula (2.6) can be shown
and rewritten as

nVar∗B(θ̂∗B) ≈ 2πf̂IF(0),(2.8)

where f̂IF(λ)(0 ≤ λ ≤ π) is a triangular window spec-
tral density estimator at frequency λ with bandwidth
�−1, based on the influence functions (IF(Yt ;F (m)))n

t=m.
The blocklength has thus the interesting interpretation
as an inverse bandwidth in spectral density estimation.
It implies that the asymptotically MSE-optimal block-
length for variance estimation is

�opt = const · n1/3.

Bühlmann and Künsch (1999) propose estimation of
�opt (or the constant in the expression above) by an
iterative plug-in scheme for optimal local bandwidth
choice in spectral density estimation at frequency zero,
using the asymptotic equivalence in (2.8).

A method which is more general, and also applicable
for choosing an optimal blocklength � for distribution
estimation, was proposed by Hall, Horowitz and Jing

(1995). They consider the performance of the block
bootstrap with different blocklengths for subsamples
of size m � n yielding an optimal blocklength for sub-
sample size m. The estimated optimal blocklength is
then derived with a Richardson extrapolation adjusting
to the original sample size n. The method needs a spec-
ification of the subsample size m, which appears to be
less critical than selecting a blocklength. Such subsam-
pling techniques are very general but may not be very
efficient. In particular, when the estimator θ̂ is highly
nonlinear, the performance on a subsample can be very
poor; this inefficiency is demonstrated in a similar con-
text in Section 4.3.

Regarding block bootstrap bias estimation, Lahiri
(1999) shows that the asymptotic MSE-optimal block-
lengths for bias and variance estimation are the same:
estimated blocklengths for variance can thus be used
for bias estimation as well.

Automatic choice of the blocklength is at least as
difficult as selection of a local bandwidth-type tuning
parameter in the context of time series. Even worse,
(2.8) describes an equivalence to a bandwidth selection
problem only asymptotically: the linearization in (2.7)
can have a substantial effect for finite sample size.
Furthermore, the blocklength � has no practically
relevant interpretation and diagnostic tools for it are so
far undeveloped.

3. AR-SIEVE BOOTSTRAP FOR STATIONARY
LINEAR TIME SERIES

Generally, sieve bootstraps rely on the idea of
sieve approximation (Grenander, 1981) for the data-
generating process (Xt )t∈Z by a family of (semi)para-
metric models. The bootstrap is then nothing other than
simulating from a sieve-estimated process.

We refer to a linear, invertible time series if it al-
lows an autoregressive representation of order infinity
[AR(∞)],

Xt − µX =
∞∑

j=1

φj(Xt−j − µX) + εt , t ∈ Z,(3.1)

where µX = E[Xt ], (εt )t∈Z is an innovation sequence
of i.i.d. random variables with E[εt ] = 0 and εt

independent of {Xs; s < t}. This is well defined if, for
example, E[ε2

t ] < ∞ and
∑∞

j=1 φ2
j < ∞.

3.1 The AR-Sieve Bootstrap Procedure

The AR-sieve approximation is constructed with
AR(p) models

Xt − µX =
p∑

j=1

φj(Xt−j − µX) + εt , t ∈ Z,
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where µX and εt are as in (3.1). Given data, we first
choose an autoregressive order p̂, for example, with the
Akaike information criterion (AIC) for Gaussian inno-
vations (cf. Shibata, 1980). The remaining parameter
of interest ηp̂ = (µX, (φ1, . . . , φp̂),Fε) is semipara-
metric. Here, Fε denotes the distribution of the i.i.d.
innovations εt . The estimates are chosen as follows:

µ̂X = n−1
n∑

t=1

Xt,

(φ̂1, . . . , φ̂p̂) by the Yule–Walker method,

F̂ε(x) = P̂[εt ≤ x] = (n − p̂)−1
n∑

t=p̂+1

1[Rt−R.≤x],

Rt = Xt −
p̂∑

j=1

φ̂jXt−j ,

with R. the mean of the available residuals Rt (t =
p̂ + 1, . . . , n).

The estimates p̂, η̂p̂ characterize a distribution P̂n;AR

for an autoregressive process. It can be represented by
the following AR(p̂) equation:

X∗AR-S
t − µ̂X

=
p̂∑

j=1

φ̂j

(
X∗AR-S

t−j − µ̂X

) + ε∗
t , t ∈ Z,

(3.2)

with (ε∗
t )t∈Z an i.i.d. innovation sequence having

marginal distribution ε∗
t ∼ F̂ε .

The AR-sieve bootstrap sample is then a finite sam-
ple X∗

1 , . . . ,X∗
n from the process in (3.2) having dis-

tribution P̂n;AR. The computation in practice is as fol-
lows. Start with (X∗−u, . . . ,X∗

−u+p̂−1) = (µ̂X, . . . , µ̂X)

with u large, for example, u = 1,000. Then simulate
X∗

t for t = −u + p̂, . . . , 0, 1, . . . , n according to (3.2).
Since the estimated process in (3.2) is (with high prob-
ability) Markovian and geometrically mixing, the val-
ues X∗

1, . . . ,X∗
n from our simulated sample are a very

good approximation for a sample of the stationary dis-
tribution of the process in (3.2). The AR-sieve boot-
strapped estimator θ̂∗AR-S is constructed with the plug-
in rule. Writing θ̂ = hn(X1, . . . ,Xn) as a function of
the original data X1, . . . ,Xn, we define

θ̂∗AR-S = hn

(
X∗AR-S

1 , . . . ,X∗AR-S
n

)
.(3.3)

Such a bootstrap was introduced by Kreiss (1992)
and further analyzed by Bühlmann (1997), Bickel and
Bühlmann (1999) and Choi and Hall (2000).

The centering value θ∗ in (1.2) for the AR-sieve
bootstrap is obtained as follows. The parameter of
interest θ is a functional of the true underlying process
(Xt )t∈Z ∼ P : θ∗AR-S is then the same functional
evaluated at the estimated P̂n;AR which generates the
bootstrapped process in (3.2).

EXAMPLE A (Continued). For the lag(1)-correlation
estimator, θ∗AR-S = Corr∗AR-S(X∗AR-S

t ,X∗AR-S
t+1 ).

Note that in general E∗AR-S[θ̂∗AR-S] �= θ∗AR-S. The
computation of θ∗AR-S can be done with a fast Monte
Carlo evaluation:

1. Generate one very long realization X∗AR-S
1 , . . . ,

X∗AR-S
v with v � n.

2. Use θ̂∗AR-S
v = hv(X∗AR-S

1 , . . . ,X∗AR-S
v ) as a

Monte Carlo approximation of θ∗AR-S.

The justification of the approximation in step 2 is given
by (1.2) saying that θ̂∗AR-S

v converges to θ∗AR-S with
rate a−1

v � a−1
n [assuming an(θ̂n − θ) converges to a

nondegenerate distribution].

3.2 Range of Applicability and Accuracy

The AR-sieve bootstrap relies heavily on the crucial
assumption that the data X1, . . . ,Xn is a finite realiza-
tion of an AR(∞)-process as in (3.1). In such a set-
ting, consistency as in (1.2) for θ̂ a smooth function
of means is given in Bühlmann (1997); the result is
extended in Bickel and Bühlmann (1999) for θ̂ as in
(2.3). Thereby, the approximating autoregressive or-
der should grow asymptotically, but not too fast, as
n → ∞. The AR(∞) representation includes the im-
portant class of ARMA models

Xt =
p∑

j=1

φjXt−j +
q∑

k=1

ψjεt−k + εt , t ∈ Z,

with invertible generating MA-polynomial; that is,
.(z) = 1 + ∑q

k=1 ψkz
k, z ∈ C, has its roots outside

the unit disk {z ∈ C; |z| ≤ 1}. Here (εt )t∈Z is an i.i.d.
innovation sequence and a few additional regularity
conditions, standard in ARMA model theory, have to
be made. Of course, there are also many processes
which are not representable as an AR(∞): for example,
the nonlinear AR(2) in (4.4) or the bilinear model
in (6.1) below. Unfortunately, testing for linearity or
AR(∞) representation is very delicate: Bickel and
Bühlmann (1997) show that the closure of linear
or AR-processes is surprisingly large. It reflects the
difficulty of judging, for a particular data set, whether
the AR-sieve bootstrap will be suitable.
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Within the class of linear invertible time series as
defined in (3.1), the AR-sieve bootstrap is known to
have high accuracy: theoretical and practical studies
show that it usually outperforms the more general
block bootstrap from Section 2. In Bühlmann (1997)
it is shown that for θ̂ = Xn = n−1 ∑n

t=1 Xt and when
using an approximating autoregressive order p̂ from
the AIC,

nVar∗AR-S(
X

∗AR-S
n

) − nVar(Xn) = OP

(
n−(v−2)/(2v))

if the true autoregressive parameters (φj )j∈N decay
like φj ≤ const · j−v (v > 2). In particular, if the φj ’s
decay exponentially fast, then

nVar∗AR-S(
X

∗AR-S
n

) − nVar(Xn)

= OP (n−1/2+κ) for any κ > 0.
(3.4)

The two results show that the method adapts automat-
ically to the decay of the underlying dependence struc-
ture, a very desirable feature which is not true for the
block bootstrap; see (2.5). These adaptivity results are
not only asymptotically relevant but can be well ex-
ploited in finite sample simulations; see Section 4.2.

The AR-sieve bootstrap is not only very accurate
for variance estimation, Choi and Hall (2000) show a
second-order property for constructing confidence re-
gions. They propose to calibrate an obtained first-order
region by double bootstrapping, based on ideas dat-
ing back to Hall (1986), Beran (1987) and Loh (1987).
Consider construction of a two-sided confidence inter-
val which covers θ with probability 1−α. A first-order
interval is given by [θ̂ − r̂1−α/2, θ̂ − r̂α/2], where

r̂α is the α-quantile of θ̂∗AR-S − θ∗AR-S,

conditional on X1, . . . ,Xn.

Now consider an additive correction of the original
nominal coverage level by using the double bootstrap.
Based on X∗AR-S

1 , . . . ,X∗AR-S
n , run the AR-sieve boot-

strap to obtain X∗∗AR-S
1 , . . . ,X∗∗AR-S

n . Now,

r̂∗AR-S
α is the α-quantile of θ̂∗∗AR-S − θ∗∗AR-S,

conditional on X∗AR-S
1 , . . . ,X∗AR-S

n .

Define

â(1 − q)

= P∗AR-S[
θ̂∗AR-S − r̂∗AR-S

1−q/2

≤ θ∗AR-S ≤ θ̂∗AR-S − r̂∗AR-S
q/2

]
,

(3.5)

measuring actual coverage on nominal level 1 − q

for the second level bootstrap based on the first level

bootstrapped data (θ∗AR-S is a constant depending only
on X1, . . . ,Xn). Then, consider

ŝ1−α = â−1(1 − α)

[the (1 − α)-quantile of â viewed as a cdf], which
corrects the nominal coverage level 1 − α to ŝ1−α . (In
Section 5.3, Figure 10 illustrates the correction of the
nominal coverage level 1 − α to ŝ1−α .) Now use[

θ̂ − r̂{1−(1−ŝ1−α)/2}, θ̂ − r̂{(1−ŝ1−α)/2}
]

(3.6)

as a two-sided, double bootstrap confidence interval
for θ with nominal coverage level 1 − α. As shown
by Choi and Hall (2000), this interval is second-
order correct. Note that explicit (difficult) variance
estimation with dependent data for Studentizing is
not necessary. Choi and Hall (2000) report from a
simulation study that this second-order interval can
bring very substantial improvements and has “never”
been found significantly worse than the first-order
construction.

3.3 Choosing the Approximating
Autoregressive Order

We propose the AR-sieve approximation in conjunc-
tion with the minimum AIC model selection procedure
with Gaussian innovations. Shibata (1980) has shown
optimality of the AIC for prediction in AR(∞) mod-
els. Moreover, (3.4) and its preceding formula, which
are both based on AIC, explain why the criterion is a
good choice for variance estimation of θ̂ = Xn.

Analogous to the problem of choosing an optimal
blocklength for the block bootstrap, the optimal autore-
gressive order generally depends on the true underlying
process, the statistic to be bootstrapped and the pur-
pose for what the bootstrap is used. The AIC has the
nice property of automatically selecting higher orders
for more strongly dependent models. Nothing is known
of how to adapt the order in the AR-sieve approxima-
tion to the statistic to be bootstrapped or to the different
cases of bootstrap variance- or distribution-estimation.

The tuning element of the AR-sieve bootstrap,
namely the selection of an AR model, has a nice in-
terpretation and allows for diagnostic checks, includ-
ing graphical procedures for AR-residuals. This is in
contrast to bandwidth-type tuning parameters like the
blocklength in Section 2.3, which have no good inter-
pretation and are not easy to “back-test” on the data.
Our empirical experience is that the choice of an ap-
proximating autoregressive order is quite insensitive
with respect to the performance of the AR-sieve boot-
strap, provided the chosen order is reasonable.
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4. BLOCK AND AR-SIEVE BOOTSTRAP IN ACTION

4.1 Total Ozone Series from Arosa

We consider here the world’s longest series of
monthly total ozone measurements, from Arosa,
Switzerland, during the period 1926–1997. It is an im-
portant source for assessing the ozone depletion in the
midlatitudes of the northern hemisphere. The measure-
ments are currently performed by the Swiss Meteoro-
logical Institute. The homogenized data set is avail-
able from http://www.lapeth.ethz.ch/doc/totozon.html.
The raw monthly measurements {Ot } exhibit big sea-
sonal effects which can be explained very well. As-
suming fixed monthly effects βi (i = 1, . . . ,12) with∑12

i=1 βi = 0, we deseasonalize the series by prelimi-
nary smoothing with a running mean Xt = ∑6

i=−6 ci

· Ot−i with ci = 1/12 (i = −5, . . . ,5) and ci = 1/24
(i = −6, 6). Figure 2 displays the filtered data (Xt )

n
t=1

with n = 814 on the Dobson scale. One main inter-
est is the study of a possibly varying mean trend: an
estimate thereof is shown in Figure 2. An additional
question is about the ozone variability around a vary-
ing trend whose estimate is also displayed in Figure 2.
Here we use time series bootstraps to assess statistical
variability of these trend and variability smoothers and
to answer the questions whether trend and/or variabil-
ity change significantly over time.

Consider the basis model

Xt = m(t/n) + s(t/n)Zt , t = 1, . . . , n = 814,

FIG. 2. Total deseasonalized ozone measurements (solid line),
mean trend smoother m̂(·) (dotted line) and magnitude of smoother
ŝ(·) for changing variability (dashed line). Time, ranging from
January 1927 to June 1997, is rescaled to (0,1].

where m(·) and s(·) are smooth mean and scale func-
tions from [0, 1] → R and R+, respectively. Moreover,
(Zt )t∈Z is a stationary process with E[Zt ] = 0 and
Var(Zt ) = 1. What Figure 2 shows are kernel estimates
of m(·) and s(·), defined as follows. For the mean func-
tion,

m̂(x) =
n∑

t=1

K

(
x − t/n

h

)
Xt, 0 < x < 1,

where K is the standard Gaussian kernel and the
bandwidth h = 0.024 is chosen by eye.

For the scale function, build the transformed values

log
((

Xt − m̂(t/n)
)2)

≈ E[log(Z2
t )] + log

(
s2(t/n)

) + Vt , t = 1, . . . , n,

where Vt = log(Z2
t ) − E[log(Z2

t )]. Now use the same
kernel estimator as above applied to log((Xt − m̂(t/

n))2), estimating γt = E[log(Z2
t )] + log(s2(t/n)).

Transforming back by exponentiating and estimat-
ing exp(E[log(Z2

t )]) by (n−1 ∑n
t=1[(Xt − m̂(t/n))2/

exp(γ̂t )])−1 (using that E|Zt |2 = 1) yields the curve
estimate ŝ(·).

In the sequel we test the two hypotheses H1: m(·)
is constant, and H2: s(·) is constant. We apply some
bootstraps to the residual process Ẑt = (Xt − m̂(t/n))/

ŝ(t/n) yielding Z∗
t , t = 1, . . . , n. Bootstrapping from

the null-distribution is then done as

X
∗H1
t = µ̂ + ŝ(t/n)Z∗

t (t = 1, . . . , n) for H1,

where µ̂ = n−1 ∑n
t=1 Xt , and

X
∗H2
t = m̂(t/n) + σ̂Z∗

t (t = 1, . . . , n) for H2,

where σ̂ 2 = n−1 ∑n
t=1(Xt − m̂(t/n))2. Using the plug-

in principle for bootstrapping m̂(·) and ŝ(·), inference
under the hypotheses can then be done with

m̂∗H1(·) based on X
∗H1
1 , . . . ,X∗H1

n for H1,(4.1)

ŝ∗H2(·) based on X
∗H2
1 , . . . ,X∗H2

n for H2.(4.2)

The construction of the resampled noise process
Z∗

t (t = 1, . . . , n), being the same for either hypothe-
ses, is done with the AR-sieve and block bootstrap: the
former with AIC estimated order 29, the latter with the
blocklengths � = 9 ≈ n1/3 (according to a simple rule,
see Section 2.3) and �̂ = 25, which is the estimate from
Bühlmann and Künsch (1999) (when the statistic of in-
terest would be the arithmetic mean, see Section 2.3).
Figures 3 and 4 show the estimates m̂(·) and ŝ(·) to-
gether with 19 bootstrap replicates each from the es-
timates in (4.1) and (4.2), respectively. They display
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FIG. 3. Mean trend estimates: 19 bootstrapped estimators m̂∗H1 (·) under the hypothesis H1 with constant trend ( fine lines), the estimator
m̂(·) based on original data (bold line); AR-sieve bootstrap with AIC estimated order 29, block bootstrap with � = 9 and estimated �̂ = 25.

the “1 out of 19 graphical rule” from Brillinger (1997),
asking whether the original estimates m̂(·) and ŝ(·) are
the most extreme among a set of 20 curves, correspond-
ing to a 5% significance level for testing. Of course, a
more formal construction of acceptance regions for say
two-sided testing of H1 and H2 would be possible.

All three bootstrap methods lead to similar con-
clusions, increasing confidence about the appropriate-
ness of the resampling methods displayed in Figures 3
and 4. It is very valuable to have both the AR-sieve
and block bootstrap as tools in a practical example.
Regarding the mean trend, there is clear evidence for
a decreasing behavior as time progresses. Looking at
the scale or variability around the mean trend, there
is weak evidence of changing scale, particularly at
x = 0.176, corresponding in real time to October 1940,

and secondary also at x = 0.923, corresponding to
March 1992.

4.2 AR-Sieve versus Block Bootstrap for
Simulated Series

For comparing the two bootstraps, we also consider
simulation experiments with two different processes
but with the statistic being in both cases the sample
median θ̂ = med(X1, . . . ,Xn), representing a simple
nonlinear estimator. The sample sizes are n = 512.
Furthermore, the tuning parameters are chosen by the
minimal AIC for the AR-sieve; � = 8 = n1/3 according
to a simple rule having the optimal asymptotic rate for
variance estimation, and �̂ from Bühlmann and Künsch
(1999) for the block bootstrap variance as indicated in
Section 2.3.



BOOTSTRAPS FOR TIME SERIES 61

FIG. 4. Estimates for scale: 19 bootstrapped estimators ŝ∗H2(·) under the hypothesis H2 with constant scale ( fine lines), the estimator
ŝ(·) based on original data (bold line); AR-sieve bootstrap with AIC estimated order 29, block bootstrap with � = 9 and estimated �̂ = 25.

For the first experiment, consider the linear ARMA
(1,1) process

Xt = −0.8Xt−1 − 0.5εt−1 + εt ,(4.3)

where (εt )t∈Z is an i.i.d sequence, independent of
{Xs; s < t}, εt ∼ t6. This model is representable as an
AR(∞)-process as in (3.1).

Figure 5 displays the quality of bootstrap approx-
imations for the sample median in model (4.3). The
AR-sieve bootstrap outperforms the block bootstrap
very clearly. Estimation of the blocklength improves
a bit upon the fixed blocklength � = 8 = n1/3: typical
values of �̂ in the 100 simulations are 22, 16 and 30
corresponding to the median value, lower quartile and
upper quartile, respectively. The better performance of
the AR-sieve bootstrap is not so surprising: we exploit
here the advantages discussed in Section 3.2. The result
here indicates quantitatively the gain in a case where

the true underlying process is not a finite-order AR-
model, and hence not an element of the approximating
sieve (for any finite sample size), but is representable
as AR(∞) as in (3.1). As noted already in Bühlmann
(1997), the gain of the AR-sieve bootstrap is usually
more substantial if the autocovariances of the process
exhibit some damped pseudoperiodic decay which is
true for the model in (4.3). This is a feature which can
be graphically diagnosed by looking at estimated auto-
covariances.

The second experiment is with a nonlinear exponen-
tial AR(2)-process with heteroscedastic innovations,

Xt = (
0.5 + 0.9 exp(−X2

t−1)
)
Xt−1

− (
0.8 − 1.8 exp(−X2

t−1)
)
Xt−2 + σtεt ,

σ 2
t = 0.5 + 0.1X2

t−1 + 0.05σ 2
t−11[Xt−1≤0]

+0.5 exp(−σ 2
t−1)1[Xt−1>0],

(4.4)
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FIG. 5. Linear model (4.3), n = 512; bootstrap distribution and variance estimation of (θ̂ − E[θ̂])/σn by (θ̂∗ − E∗[θ̂∗])/σn for
θ̂ = med(X1, . . . ,Xn) [σn = (Var(θ̂))1/2]; (three left panels) QQ-plots with target indicated by the line; (right panel) boxplots with target
indicated by the horizontal line. 100 simulation runs, 500 bootstrap replicates per simulation run.

where (εt )t∈Z is an i.i.d sequence, independent of
{Xs; s < t}, εt ∼ t6/

√
1.5. This process is not repre-

sentable as an AR(∞) as in (3.1).
Figure 6 displays the quality of bootstrap approxima-

tions for the sample median in model (4.4). The AR-
sieve bootstrap, which is not asymptotically consistent
due to the nonlinearity of the model in (4.4), exhibits
a clear bias, and the block bootstrap is superior. As in
the linear case (4.3), using the estimated blocklength
�̂ improves upon the fixed blocklength � = 8 = n1/3:
typical values of �̂ in the 100 simulations are 11, 7 and
14, corresponding to the median value, lower quartile
and upper quartile, respectively. The results in Figure 6
again give quantitative insights about the gain when us-
ing the block bootstrap in this nonlinear model.

4.3 Comparison with Subsampling

Subsampling blocks is a very general technique for
estimating moments or the distribution of an estima-
tor θ̂ . The basic idea is to compute an estimator θ̂ =
hn(X1, . . . ,Xn) over many subsamples of � consecu-
tive observations (blocks)

θ̂�,t = h�(Xt−�+1, . . . ,Xt ), t = �, . . . , n.

Distribution and variance approximations with sub-
sampling are then constructed as

(n − � + 1)−1
n∑

t=�

1[a�(θ̂�,t−θ̂ )≤x] ≈ P[an(θ̂ − θ) ≤ x],

(n − � + 1)−1
n∑

t=�

(
a�(θ̂�,t − θ̂ )

)2 ≈ a2
nVar(θ̂)
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FIG. 6. Nonlinear model (4.4), n = 512; bootstrap distribution and variance estimation of (θ̂ − E[θ̂])/σn by (θ̂∗ − E∗[θ̂∗])/σn for
θ̂ = med(X1, . . . ,Xn) [σn = (Var(θ̂))1/2]: (three left panels) QQ-plots with target indicated by the line; (right panel) boxplots with target
indicated by the horizontal line. 100 simulation runs, 500 bootstrap replicates per simulation run.

with (an)n∈N as in (1.2). The main advantage over
bootstrapping is the very general setting in which ap-
proximation with subsampling is consistent. For de-
tails, see Politis, Romano and Wolf (1999, Section 3).
However, computing an estimator θ̂ on subsamples of
much smaller size � � n and scaling up to its behavior
of the original sample size n can be problematic when
θ̂ is highly nonlinear and sample n is not extremely
large. A simple but impressive example is the empiri-
cal lag(1) autocorrelation

θ̂ = ρ̂(1) = R̂(1)/R̂(0)

as in Example A from Section 2.1.
Figure 7 displays the results for variance estima-

tion of ρ̂(1) in model (4.3) with sample size n = 512.

The AR-sieve bootstrap is best, since the model is lin-
ear; the block bootstrap clearly outperforms the sub-
sampling technique, both using the same blocklength
� = 8 = n1/3 (according to a simple rule having the
correct asymptotic rate for both methods). Generally, it
is not advisable to use subsampling when the bootstrap
is known to be consistent. Subsampling is an interest-
ing tool for complicated procedures θ̂ (on a large data
set) where bootstrap methods potentially fail.

5. VARIABLE LENGTH MARKOV CHAIN SIEVE
BOOTSTRAP FOR STATIONARY CATEGORICAL

TIME SERIES

Sieve approximation is also successful for general
stationary processes (Xt )t∈Z with values in a categori-
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FIG. 7. Linear model (4.3), n = 512: variance estimation
of nVar(θ̂) for the estimated lag-1 autocorrelation θ̂ = ρ̂(1)

(horizontal line); “AR”, “Block” and “Subs” denote AR-sieve,
block bootstrap and subsampling, respectively; the latter two with
blocklengths � = 8. 100 simulation runs and 500 replicates per
simulation run for the bootstraps.

cal, finite space X. For example, data from a DNA se-
quence with values in the set {A,C,T ,G} build a cat-
egorical time series. We consider the sieve of so-called
variable length Markov chains (VLMC) for approxi-
mating X-valued time series (Xt )t∈Z.

An X-valued, stationary VLMC (Xt )t∈Z is charac-
terized as a Markov chain of potentially high order
whose time-homogeneous transition probabilities de-
pend on a variable number � of lagged values,

P[Xt = xt | Xt−1 = xt−1,Xt−2 = xt−2, . . .]
= P[Xt = xt | Xt−1 = xt−1, . . . ,Xt−� = xt−�]

for all xt ∈ X, where � = �(xt−1, xt−2, . . .) is itself a
function of the past. If �(xt−1, xt−2, . . .) ≡ p for all
xt−1, xt−2, . . . , we obtain the full Markov chain model
of order p. For variable �(·) with sup{�(xt−1, xt−2, . . .);
xt−1, xt−2, . . .} = p, we can always embed a VLMC in
a full Markov chain of order p, but with the additional
structure of a variable length memory. It implies that
some transition probabilities of the embedding Markov
chain are the same; that is, some rows in the matrix of
Markov transition probabilities are identical. The vari-
able length memory is essential for parsimony while
still being flexible: it is an attractive approach to deal-
ing intelligently with the curse of dimensionality which
is heavily present in full Markov chains. The main dif-
ficulty is the estimation of �(·), the structure of the vari-
able length memory, from data. Since �(·) is discrete,

the task can be viewed as a highly complex model se-
lection problem among an enormous number of possi-
ble candidate models.

A version of the tree structured context algorithm
(Rissanen, 1983) can be used for estimating �(·) and
the set of transition probabilities. The exact descrip-
tion of the algorithm as used here can be found in
Bühlmann and Wyner (1999) or Bühlmann (2002). It
yields a consistent estimate P̂n;VLMC for the distribu-
tion of suitably regular processes which is not neces-
sarily a VLMC.

The construction of the VLMC-sieve bootstrap is
then as follows. Resample

X∗VLMC-S
1 , . . . ,X∗VLMC-S

n ∼ P̂n;VLMC.(5.1)

We briefly describe in Section 5.2 how this can be
computed using the software R. Having the bootstrap
sample in (5.1), we proceed by using the plug-in
principle, exactly as in (3.3).

5.1 Range of Applicability and Accuracy

The VLMC-sieve bootstrap is designed to be consis-
tent for data-generating stationary categorical proces-
ses which are short-range dependent (e.g., summable
mixing coefficients). Asymptotically, the context algo-
rithm for fitting VLMC’s automatically selects larger
models (or finds the true VLMC model) as n → ∞.
Consistency as in (1.2) then holds for general estima-
tors of the form (2.3) defined in Section 2.1. More de-
tails are given in Bühlmann (2002).

For variance estimation, the VLMC-sieve bootstrap
has good convergence rates: if the mixing coefficients
decay exponentially fast as separation lags increase,
and if the data-generating process is suitably regular
(not necessarily a VLMC),

nVar∗VLMC-S(
θ̂∗VLMC-S) − nVar(θ̂)

= OP (n−1/2+ε) for any ε > 0,
(5.2)

where θ̂ = (n − m + 1)−1 ∑n
t=m f (Xt−m+1, . . . ,Xt )

with f : Xm → R (m ∈ N) (cf. Bühlmann, 2002). The
bound in (5.2), achieved in a data-driven way, is much
better than (2.5) for the block bootstrap.

Double VLMC bootstrapping and construction of a
calibrated confidence interval can be done analogously
to (3.6), aiming for higher order coverage properties.

5.2 Computation and Tuning Parameter Selection

The context algorithm and the VLMC-sieve boot-
strap are implemented in the statistical computing lan-
guage R, freely available from the download section
of http://www.rproject.org/. The exact commands in R
look as follows:
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FIG. 8. Bootstrap distribution and variance estimation of (Xn − E[Xt ])/σn by (X
∗
n − E∗[X∗

n])/σn for n = 128 [σn = (Var(Xn))1/2]: the
target is indicated by the line. VLMC-sieve bootstrap with cutoff values χ2

1;α/2 with α = 0.95, 0.97, 0.99; block bootstrap with � = 5 and
estimated �̂. 100 simulation runs, 500 bootstrap replicates per simulation run.

> library(VLMC)
> fit <− vlmc(series,cutoff=C)

This is the VLMC fit of the data with the context
algorithm. Thereby, the so-called cutoff value is used
as a tuning parameter. The default cutoff is C =
χ2

card(X)−1;0.95/2, half of the 95% quantile of a χ2-
distribution with card(X) − 1 degrees of freedom.

> simulate.vlmc(fit, resample size)

This is the VLMC-sieve bootstrap sample.
The cutoff tuning parameter mentioned above char-

acterizes a computationally efficient selection of a
VLMC model structure. A simple data-driven version
for selecting the cutoff can be implemented by mini-
mizing the AIC statistic: the AIC statistics of the fitted
model fit is given by

> AIC(fit)

More on-line help is implemented in R with library
(VLMC) and additional details can be found in
Bühlmann (2002).

5.3 VLMC-Sieve versus Block Bootstrap for
Simulated Series

The differences in variance estimation between (2.5)
and (5.2) can be well exploited in finite-sample prob-
lems, and the gain of the VLMC-sieve bootstrap is of-
ten, although not always, substantial.

We consider a simulated example where

Xt = 1[Yt>0], Yt = 0.8Yt−1 + εt , t ∈ Z,

where (εt )t∈Z is an i.i.d. innovation sequence, inde-
pendent of {Ys; s < t}, εt ∼ t6. Of interest here is the
stationary binary process (Xt )t∈Z whose memory, de-
scribing the structure of Xt given Xt−1,Xt−2, . . . is
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nonsparse and infinitely long. Thus, a priori, we do not
give any advantage to the method of VLMC-sieve ap-
proximation.

We consider two different estimators:

(S1) θ̂ = n−1 ∑n
t=1 Xt ;

(S2) θ̂ is the probability of the five-tuple (1, 1, 1, 1, 1)
in an estimated VLMC model.

The estimator (S1) is linear and structurally very
simple, whereas (S2) is a complicated function of
the data, involving a tree-structured model. VLMC-
sieve bootstrapping for (S1) and (S2) is constructed
with the plug-in rule in (3.3). Block bootstrapping
for (S1) requires no vectorization step as described in
Section 2.1. The estimator (S2) is an example where
redesigning the computation for block bootstrapping
with vectorization is almost impossible: the VLMC-
estimator (S2) is computationally implemented with
input being a sequence of categorical variables. The
only feasible way for block bootstrapping (S2) is
simply to ignore the vectorization step. The sample
sizes are n = 128 for (S1) and n = 512 for (S2).

The VLMC-sieve bootstrap is run with different
cutoff tuning parameters, the block bootstrap with the
simple choice of blocklength � = 5 ≈ n1/3 for n = 128
and � = 8 = n1/3 for n = 512, and for (S1) also with
the estimated �̂ from Bühlmann and Künsch (1999) as
indicated in Section 2.3. Figure 8 displays the quality
of distribution estimation for the estimator (S1). For
distribution estimation, the VLMC-sieve bootstrap is
better than the block bootstrap for a whole range
of cutoff tuning parameters, at least not too far out
in the tails [not that the true distribution is close to
N (0, 1) and hence quantiles around ±2 are often of
interest]. For variance estimation, the advantage of the
VLMC method is less pronounced, but still present: the
VLMC-sieve bootstrap with the best tuning parameter
has 20.5% lower mean squared error for variance
estimation than the best block bootstrap. Using the
estimated blocklength �̂ improves a bit upon the fixed
blocklength � = 5 ≈ n1/3; typical values of �̂ in the 100
simulations are 8, 6 and 9, corresponding to the median
value, lower quartile and upper quartile, respectively.

Figure 9 displays the quality of distribution and vari-
ance estimation for (S2). Due to computational ex-
penses when bootstrapping the complicated estimator
(S2) we only ran the procedures with one “standard”
tuning parameter each: cutoff χ2

1;0.95/2 = 1.92 and
� = 8 [estimation of � for the complicated estimator
(S2) is very difficult]. Also in this case, the VLMC-
sieve is better than the block bootstrap. The VLMC

method produces a few outliers for variance estimation
which indicates a small chance that the VLMC-sieve
approximation can be bad for the complicated estima-
tor (S2).

Figures 8 and 9 are representative of other situa-
tions with exponentially decaying dependence struc-
ture: very often, the VLMC-sieve bootstrap is better
than the block bootstrap, the latter being also more
sensitive to the specification of the blocklength para-
meter. In practice, a procedure which is insensitive to
the choice of tuning parameters is highly desirable.
An example where the block bootstrap is better than
the VLMC method is given in Bühlmann (2002): there
the underlying model exhibits only dependencies over
neighboring values [lag(1)-dependence], which is gen-
erally favorable for the block bootstrap.

We also examine construction of a two-sided confi-
dence interval with the estimator (S1) for θ = E[Xt ] =
1/2 on nominal coverage level 0.9 for sample size
n = 128. We consider first-order accurate block and
VLMC-sieve bootstraps and corrections thereof with
a version of BCa for the block bootstrap (cf. Götze
and Künsch, 1996) and the double bootstrap for the
VLMC method, analogously to the AR-sieve scheme
in section 3.2, formula (3.6) (with the same tuning pa-
rameter for the first- and second-level bootstrap). The
tuning parameters of the methods correspond to the up-
per left and lower right panels in Figure 8. Due to the
discreteness of the observations Xt (latticeness of the
problem), correction of confidence intervals does not
seem worthwhile from an asymptotic point of view.
However, there still may be some considerable gain
to employ corrections for finite samples. For a re-
lated discussion see Hall (1987) and Woodroofe and
Jhun (1988). Coverage probabilities of confidence in-
tervals with median and mean absolute deviation of
their lengths are given in Table 1. The non-Markovian

TABLE 1
Coverage probabilities for two-sided confidence interval on

nominal 90% level with median and mean absolute deviation
(MAD) of their lengths; sample size n = 128; based on 100

simulations, 500 first-level bootstrap replicates; double VLMC
bootstrap calibration with 100 first- and 100 second-level

bootstrap replicates

Block, VLMC, Block BCa , Double VLMC,
�̂ 95% �̂ 95%

Coverage 0.71 0.74 0.75 0.84
Median(length) 0.262 0.276 0.258 0.368
MAD(length) 0.041 0.063 0.041 0.122
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FIG. 9. Bootstrap distribution and variance estimation of (θ̂ − E[θ̂])/σn by (θ̂∗ − E∗[θ̂∗])/σn for θ̂ from (S2) and n = 512
[σn = (Var(θ̂ ))1/2]: (two left panels) QQ-plots with target indicated by the line; (right panel) boxplots with target indicated by the horizontal
line. 50 simulation runs, 200 bootstrap replicates per simulation run.

FIG. 10. Double VLMC bootstrap calibration for one typical
sample of size n = 128: (x-axis) nominal coverage level for sec-
ond-level bootstrap based on first-level bootstrapped data; (y-axis)
corresponding actual coverage level. These are the quantities 1−q

and â(1 − q) in (3.5); the solid and dotted lines indicate the func-
tion â(1 − q) and the corrected value ŝ0.90 = 0.967, respectively.
Based on 500 first-level and 500 second-level bootstrap replicates.

model used in the simulation and the small sample
size n = 128 make interval estimation difficult and ex-
plain the generally poor coverage results. For the block
bootstrap, the BCa method increases performance with
weak significance compared to the first-order block in-
terval. In comparison with the first-order VLMC and
with any of the block methods, the double VLMC boot-
strap improves with strong significance upon coverage.
On average over the 100 simulations, it corrects the
nominal 90% to the 97.3% coverage level; a calibration
for one typical sample is shown in Figure 10, yielding
the corrected coverage level 96.7%.

6. A LOCAL BOOTSTRAP FOR CONDITIONAL
MEAN ESTIMATES

The sieve and block bootstraps give reasonable
results for a variety of estimators θ̂ , whenever the data-
generating process belongs to an appropriate range
for the various bootstraps, as discussed above. A bit
surprisingly, some bootstraps based on independent
resampling can be used for the class of nonparametric
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estimators θ̂ having slower rate of convergence than
1/

√
n: for example, θ̂ (·) a (kernel) smoother of the

conditional expectation θ(·) = E[Xt | Xt−1 = ·] of a
stationary process.

We focus on interval estimation with a so-called
local bootstrap for the conditional expectation θ(x) =
E[Xt | Xt−1 = x], x ∈ R, of a stationary real-valued
process (Xt )t∈Z. This case, which we choose for
reasons of expository simplicity, can be easily extended
to the more general parameter E[f (Xt) | Xt−i1 =
x1, . . . ,Xt−ip = xp] for a specified set of p lagged
indices t − i1, . . . , t − ip and f : R → R (in practice,
p most often smaller or equal to 2). Given data
X1, . . . ,Xn, consider the kernel estimate

θ̂h(x) =
∑n

t=2 Wt,h(x)Xt∑n
t=2 Wt,h(x)

,

Wt,h(x) = K

(
x − Xt−1

h

)

with bandwidth h.
For bootstrapping θ̂h(x), resampling in a local re-

gression framework can be used,

X∗L
t ∼ F̂Xt−1,b (t = 2, . . . , n),

independently of X∗L
s (s �= t),

where F̂x,b(·) = ∑n
t=2 Wt,b(x)1[Xt≤·]/

∑n
t=2 Wt,b(x)

is an estimate of the conditional cumulative distribu-
tion of Xt given Xt−1 = x; b is a (pilot) bandwidth
and W·,·(·) as above. Thus, the resampling is con-
structed independently with the estimated {F̂x,b(·);x ∈
R} which are allowed to change locally. The boot-
strapped kernel estimator θ̂h(x) is then given from the
regression-type data (X1,X∗L

2 ), (X2,X∗L
3 ), . . . , (Xn−1,

X∗L
n ),

θ̂∗L
h (x) =

∑n
t=2 Wt,h(x)X∗L

t∑n
t=2 Wt,h(x)

.

Such an approach was considered by Neumann and
Kreiss (1998) and Paparoditis and Politis (2000).

The local bootstrap works because the asymptotic
distribution of the kernel estimator θ̂h(x) is Gaussian,
depending only on the marginal distribution of Xt ,
the conditional distribution of Xt given Xt−1 and the
known form of the kernel; see Robinson (1983). The
local bootstrap is able to estimate consistently all these
unknowns. This is only asymptotically true and for
any finite sample size n, already the variance of θ̂h(x)

depends on the n-dimensional distribution of (Xt )t∈Z

in a specific way. By construction, the local bootstrap

cannot pick up dependencies beyond the conditional
distribution of Xt given Xt−1. This disadvantage does
not occur with bootstraps designed for dependent data,
for example, the block bootstrap: Accola (1998) proves
a better rate of estimating Var(θ̂h(x)) with the block
than the local bootstrap.

Neumann and Kreiss (1998) and Neumann (1998)
construct (with a related local bootstrap) consistent
confidence regions for θ(x) which are simultaneous
over x. Their rates of convergence are 1/

√
nh as for

the pointwise case. This is a very important result
since analytical simultaneous approximations tend to
a limiting extreme value distribution with the very
slow rate of 1/ log(n): the analytic approach via the
limiting distribution is far inferior to the local bootstrap
construction.

6.1 Range of Applicability and Selection of the
Tuning Parameter

The local bootstrap is proven to be consistent when-
ever (Xt )t∈Z is a short-range dependent process (cf. Pa-
paroditis and Politis, 2000, and Ango Nze, Bühlmann
and Doukhan, 2002).

The tuning parameter of the local bootstrap is the
pilot bandwidth b. A simple approach is to choose
b = h, where h is the prechosen bandwidth of the
estimator θ̂h(x). When b is of larger order than h, an
asymptotically nonnegligible bias E[θ̂h(x)]− θ(x) can
be estimated with the local bootstrap (cf. Paparoditis
and Politis, 2000). The pilot bandwidth plays a role
in estimating the conditional distribution of Xt given
Xt−1: this task is relatively easy for two-dimensional
distributions. The procedure seems not very sensitive
to specification of this pilot bandwidth.

6.2 Local versus Block Bootstrap for
Simulated Series

From a finite sample point of view it is interesting
to see whether a bootstrap taking time series effects
into account, say the block bootstrap, is advantageous.
We consider here a simulation experiment which deals
with a bilinear model,

Xt = 0.5εt−1Xt−1 + εt ,(6.1)

where (εt )t∈Z is an i.i.d. innovation sequence with εt

independent of {Xs; s < t}. We consider the following
cases:

(M1) εt i.i.d. ∼ Uniform({-1,1}), that is, P[εt = 1] =
P[εt = −1] = 1/2;

(M2) εt i.i.d. ∼ Uniform([−1, 1]).
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Both models (M1) and (M2) exhibit weak forms of
dependence. We found empirically that estimation of
Var(θ̂h(x)) is harder in the discrete innovation model
(M1) than in (M2).

Figure 11 displays results for estimating Var(θ̂h(x)),
with standard Gaussian kernel K and reasonable band-
width h = 0.25. Sample size is n = 512. Graphical de-
tection of relevant differences is difficult. A more quan-
titative description is as follows. In (M1) the block
bootstrap with � = 5 (“B, 5”) performs best, with re-
spect to MSE: it has about 40% lower MSE than the
best local bootstrap with b = 0.5 (“L, 0.5”): the two-
sided paired Wilcoxon test favors “B, 5” with a p-value
of 0.002 for the null hypothesis of equal MSE. Com-
paring any of the local with any of the other block boot-
straps with � = 1, 3, 8 yields no significant difference.
In (M2), the block bootstrap with � = 1 (which is a re-
gression bootstrap under independence) performs best,
having about 9% lower MSE, than the best local boot-
strap with b = 0.5; but the difference is nonsignificant.
Excluding “B, 8” with unreasonably large blocklength
(having a significant disadvantage with respect to local
bootstraps), any of the local compared with any of the
other block bootstraps with � = 1, 3, 5 yields no signif-
icant difference. For this specific bilinear model with
weak degree of dependence we conclude the follow-
ing. In the easier case (M2), the local and block boot-
straps are equally good (when excluding the unreason-
able blocklength � = 8). This contrasts a bit with the
harder case (M1) where the block bootstrap is always

FIG. 11. Bootstrap variance estimates Var∗(θ̂∗
h(x))/Var(θ̂h(x))

at 80% quantile of marginal distribution, namely x = 1.60 and
x = 0.76 for (M1) and (M2), respectively (the target is indicated
by the horizontal line): “L” for local bootstrap with pilot band-
widths 0.25 and 0.5; “B” for block bootstrap with blocklengths
1,3,5 and 8. Sample size is n = 512.

as good as local bootstraps and even better, provided
we have a good rule for choosing a blocklength around
� = 5. We expect the block bootstrap to be clearly bet-
ter than the local bootstrap whenever the data exhibits
stronger degree of dependence.

7. CONCLUSIONS

Among the block bootstrap, two types of sieve boot-
strap and a local resampling scheme, the block boot-
strap is the most general method. A further advan-
tage is its simple implementation of resampling which
is no more difficult than in Efron’s i.i.d. bootstrap.
Disadvantages of the method include the following.
The block bootstrap sample should not be viewed as
a reasonable sample mimicking the data-generating
process: it is not stationary and exhibits artifacts where
resampled blocks are linked together. This implies that
the plug-in rule for bootstrapping an estimator θ̂ is not
appropriate. A prevectorization of the data is highly
recommended, but the bootstrapped estimator and its
computing routine may then need to be redesigned. As
a general nonparametric scheme, the block bootstrap
may be outperformed in various niches of stationary
time series, for example, for linear time series (see Sec-
tion 3) and for categorical processes (see Section 5).
Second-order accuracy for a confidence interval has
been justified with the approach of Studentizing and
BCa correction (in the case of noncategorical time se-
ries); the latter was found to yield marginal improve-
ment in a simulated example (we did not consider the
former). Double bootstrapping does not seem promis-
ing since the block bootstrap in the first iteration cor-
rupts dependence where blocks join.

Sieve bootstraps in general resample from a rea-
sonable time series model. This implies two advan-
tages: the plug-in rule is employed for defining and
computing the bootstrapped estimator, and the double
bootstrap potentially leads to higher order accuracy.
Good sieve bootstraps, like the AR- or VLMC-sieve
schemes, are expected to adapt to the degree of depen-
dence: their accuracy improves as the degree of depen-
dence decreases; see (3.4) and (5.2). This is not the case
with the block bootstrap, as seen from (2.5). Also, sieve
bootstraps seem generally less sensitive to selection of
a model in the sieve than the block bootstrap to the
blocklength.

The AR-sieve bootstrap is clearly best if the data-
generating process is a linear time series, representable
as an AR(∞) as in (3.1). The method is easy to
implement, due to the simplicity of fitting an AR
model.
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The VLMC-sieve bootstrap is often best for cate-
gorical processes. The disadvantage is the difficulty
of doing the resampling: the context algorithm which
is used for this task is publicly available in R, which
should help to overcome most of the implementational
burdens. The algorithm is computationally fast using
only O(n log(n)) essential operations. Double boot-
strapping was successful in a simulated example.

The local bootstrap from Section 6 is restricted to
nonparametric estimation procedures having slower
rate of convergence than 1/

√
n. Although designed

as a regression bootstrap in the independent setup, it
is consistent and hence robust against some form of
dependence. Its advantage is simplicity, since no tuning
parameter governing strength of general dependence of
the data-generating process has to be specified. On the
other hand, this also indicates its weakness and lack of
ability to mimic dependence properly: the method may
be outperformed by the block bootstrap.

8. OTHER RESULTS AND NOTES TO
REFERENCES

We complement our selective exposition by briefly
pointing to some additional references. Efron and Tib-
shirani (1993, Chapters 8.5 and 8.6), Shao and Tu
(1995, Chapter 9), Li and Maddala (1996) and Davi-
son and Hinkley (1997, Chapter 8) discuss bootstrap
methods for dependent data from a different perspec-
tive than our comparative review.

Literature about the block bootstrap is extensive by
now. A review of the earlier area of the field can be
found in Léger, Politis and Romano (1992). Refine-
ment of Künsch’s (1989) results, aiming for minimal
assumptions, are given in Radulović (1996a). Vari-
ous results in empirical processes include Bühlmann
(1994, 1995), Radulović (1996b, 1998) and Peligrad
(1998). Lahiri (1996) proves second-order correctness
of the block bootstrap for the case where θ̂ is an
M-estimator in a linear regression model with depen-
dent noise. The block bootstrap technique is also ap-
plicable for spatial processes (cf. Politis and Romano,
1993). A version of the block bootstrap achieving sta-
tionarity for the bootstrap sample, the so-called sta-
tionary bootstrap, was proposed by Politis and Romano
(1994a). Lahiri (1999) shows rigorously that the block
bootstrap is better than the stationary bootstrap. Carl-
stein et al. (1998) propose a linking scheme for resam-
pling blocks: they argue that, for the case of variance
estimation of θ̂ = Xn, such a procedure has lower mean
squared error. The tapered block bootstrap (Paparoditis
and Politis, 2001) achieves this goal as well.

Related to the block bootstrap are subsampling
methods. The work by Carlstein (1986) can be viewed
as a predecessor of the block bootstrap for variance
estimation. In a remarkable paper, Politis and Romano
(1994b) show that subsampling is much more generally
applicable than block bootstrap methods: namely in
essentially all cases where θ̂ has some nondegenerate
limiting distribution. Künsch (1989) argues that, for
the case where the statistic θ̂ is asymptotically normal,
the block bootstrap is better than subsampling. Other
results about subsampling can be found in the book by
Politis, Romano and Wolf (1999).

Model-based bootstrapping has been studied in nu-
merous cases: Freedman (1984) and Bose (1988) for
AR; Kreiss and Franke (1992) for ARMA; Rajarshi
(1990), Paparoditis and Politis (2002) for Markov mod-
els. A nonparametric AR(1) model with heteroscedas-
tic innovations is discussed in Franke, Kreiss, Mam-
men and Neumann (1998): this model-based bootstrap
can be used for accurate construction of simultane-
ous confidence bands of the autoregression function
m(x) = E[Xt | Xt−1 = x]. Note that the same can be
achieved (to first order) by a local bootstrap from Sec-
tion 6.

For the AR-sieve bootstrap, empirical process re-
sults are given in Bickel and Bühlmann (1999) via
establishing a weak notion of mixing for the boot-
strapped process. The nonstationary case where Xt =
mt + Zt, t ∈ Z, with (mt )t∈Z a slowly varying deter-
ministic trend and (Zt )t∈Z an AR(∞) noise process is
studied in Bühlmann (1998), where AR-sieve bootstrap
confidence intervals for the trend are established.

Combining model- or sieve-based methods with the
block bootstrap was suggested by Davison and Hinkley
(1997, Chapter 8.2): they call the procedure post-
blackening. The idea is to prewhiten the time series
with a model- or sieve-based approach and then apply
the block bootstrap to the hopefully less dependent,
whitened residuals: block resampling of these residuals
and inverting the whitening operation then yields the
postblackened resample.

Another way of bootstrapping stationary linear time
series was proposed by Dahlhaus and Janas (1996):
they independently resample periodogram values in the
frequency domain according to a spectral density esti-
mate. By construction, this resampling considers only
the autocovariance structure and consistency is thus re-
stricted to linear time series. The idea of independent
resampling in the frequency domain appeared earlier in
Franke and Härdle (1992) for bootstrapping a spectral
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density estimator; a modification thereof with a boot-
strap scheme of local type was given by Paparoditis
and Politis (1999).
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